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This paper argues in favor of a specific type of confidence for use in computer-aided diagnosis and disease classification, namely,
sine/cosine values of angles represented by points on the unit circle. The paper shows how this confidence is motivated by Chinese
medicine and how sine/cosine values are directly related with the two forces Yin and Yang. The angle for which sine and cosine
are equal (45°) represents the state of equilibrium between Yin and Yang, which is a state of nonduality that indicates neither
normality nor abnormality in terms of disease classification. The paper claims that the proposed confidence is intuitive and can be
readily understood by physicians. The paper underpins this thesis with theoretical results in neural signal processing, stating that a
sine/cosine relationship between the actual input signal and the perceived (learned) input is key to neural learning processes. As a
practical example, the paper shows how to use the proposed confidence values to highlight manifestations of tuberculosis in frontal

chest X-rays.

1. Introduction

With increasing performance of automated disease detection,
computer-aided diagnosis (CAD) is becoming a serious alter-
native to the established diagnostic workflow [1]. CAD can
lead to better diagnostics by providing physicians with critical
information extracted from many relevant cases through
machine learning techniques. However, the communication
between man and machine should be intuitive so that a
physician can readily use the machine output for diagnostics.
This paper describes a method for generating confidence
values for local manifestations of tuberculosis detected auto-
matically in a frontal chest X-ray (CXR). The proposed
confidence values are motivated by Chinese medicine and
neural signal processing. The higher the confidence the more
likely it is that the detected abnormal region is indeed
abnormal. The confidence values correspond to sine or cosine
and can thus be represented by a point on the unit circle. A
confidence of sin(45°) describes a region that the machine
considers neither normal nor abnormal. This confidence
therefore describes a state of equilibrium where Yin and Yang
are in perfect balance, a state of nonduality. Note that this is
in contrast to the conventional understanding in traditional
Chinese medicine, where the equilibrium between Yin and

Yang denotes a healthy state. However, in the author’s opinion
this is incorrect because the state of equilibrium between Yin
and Yang is the state of nonduality, but assigning attributes,
such as “healthy state,” clearly introduces duality. Therefore,
the equilibrium of Yin and Yang should be associated with
neither normality nor abnormality. The proposed confidence
values meet this requirement. The state of equilibrium corre-
sponds to a state of uncertainty, in which it is entirely unclear
whether a lung region is normal or abnormal. This could be
because there is no indication for one or the other, or there is
supporting evidence in equal shares for both normality and
abnormality.

A second motivation of the confidence values proposed
here is that they are designed to be intuitively accessible by
a radiologist, in the sense that they can be easily learned
without much calibration on the part of the radiologist.
The proposed confidence values should represent similar
numerical values a human expert would provide if asked
to quantify his confidence in a specific abnormality. This
would guarantee that the opinion of the machine is put
on an equal footing with the opinion of the radiologist.
The radiologist can then integrate his own confidence with
the machine confidence and reach the final verdict about
whether a specific lung region should be considered normal



or abnormal. The paper will resort to principles of neural
signal processing to argue that the proposed confidence is
intuitive because it forms the basic of synaptic learning.

The paper is structured as follows. In Section 2, the
formal definition of Yin and Yang will be presented and the
connection between the proposed confidence and the forces
of Yin and Yang will be discussed in more detail. This chapter
is largely motivated by earlier work in [2, 3]. In Section 3,
the proposed confidence values will be used to represent
manifestations of tuberculosis in frontal chest X-rays as a
saliency map. Finally, a conclusion will summarize the main
results.

2. Materials and Methods

Section 2.1 summarizes briefly the basic principles and pro-
cesses of neural signal transduction that we can observe
at chemical synapses. Section 2.2 explains the information-
theoretic model that is used in this paper to formalize the
information flow occurring at a synapse, similar to [3], and
shows why the proposed model makes sense given what
is known today about neural signal processing. Following
this introduction of the theoretical model, Section 2.3 shows
a direct connection to Yin and Yang. Section2.4 then
describes how synaptic learning is explained in the proposed
information-theoretic model. Finally, Section 2.5 shows how
these results motivate the proposed confidence values.

2.1. Neural Signal Transduction. This section presents a brief
overview of the basic signal transduction principles, as
they are needed for understanding the remainder of this
paper. First, neurons and synapses are explained and then
the Hodgkin and Huxley model describing electrical signal
processing of nerve cells is presented. Most of the information
in this subsection is taken from [3].

2.1.1. Neurons and Synapses. The human nervous system
is composed of nerve cells, so-called neurons, which can
communicate with each other through synapses. A synapse
is a membrane-to-membrane junction that allows either
chemical or electrical signal transmission. In the case of
chemical synapses, which will be in the focus here, signals
are transmitted via neurotransmitters that can bridge the
synaptic cleft, a small gap between the membranes of two
nerve cells. As an illustration, the diagram in Figure 1 shows
two communicating neurons. A neuron can send a signal to
another neuron through its axon, which is a protrusion with
potentially thousands of synapses and which can extend to
other neurons in distant parts of the body. A neuron can
receive the signal via its soma or its dendrites that conduct
the received signal to the cell body (see Figure1). In both
cases, the signal needs to pass a synapse that transmits the
signal by molecular means, via neurotransmitters, through
the synaptic cleft, from the presynaptic terminal to the
postsynaptic terminal. The small volume of the synaptic
cleft allows neurotransmitter concentration to increase and
decrease rapidly. Prior to any signal transmission, the neuro-
transmitters are enclosed in small spheres, synaptic vesicles,
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FIGURE 1: A signal propagating down an axon to the cell body and
dendrites of the next cell (Source: NIA/NIH).
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at the presynaptic terminal. On the other side, the post-
synaptic terminal provides receptors for neurotransmitters
traveling through the synaptic cleft. The lower right corner
of Figure 1 shows a close-up of a synapse. The adult human
brain contains between 10'* and 5 x 10" of these synapses.
Synapses, and the way they transmit information, are crucial
to the biological computations that underlie perception and
thought. The common understanding is that synapses, and
changes in their behavior, are responsible for memorization
and human learning. To get insight into these processes, it is
essential to study the molecular processes underlying signal
transmission.

Signal transmission at a chemical synapse is a multistep
process (see Figure 2). The transmission is triggered by an
electrochemical excitation (action potential) at the presy-
naptic terminal. The excitation causes calcium channels to
open, allowing calcium ions to flow into the presynaptic
terminal. The increased concentration of calcium ions in
the presynaptic terminal causes the vesicles to release their
neurotransmitters into the synaptic cleft. Some of these
neurotransmitters bind to the receptors of the postsynaptic
terminal, which opens ion channels in the postsynaptic mem-
brane, allowing ions to flow into or out of the postsynaptic
cell. This changes the transmembrane potential, leading to an
excitation or inhibition of the postsynaptic cell. In this way,
the action potential from the presynaptic terminal has created
a postsynaptic potential by molecular means. Eventually,
the docked neurotransmitters will break away from the
postsynaptic receptors. Some of them will be reabsorbed by
the presynaptic cell to initiate another transmission cycle.

2.1.2. Model by Hodgkin and Huxley. In 1952, in a seminal
paper, Hodgkin and Huxley proposed a set of equations
explaining the electrical characteristics of nerve cells and
their underlying ionic mechanisms [4]. Their entry point is
the sodium conductance at the cell membrane of a nerve cell.
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FIGURE 2: Signal transmission at a chemical synapse [21] (Source: Wikipedia, Surachit, Nrets).

Similar to calcium ions, sodium ions are largely responsible
for generating action potentials in nerve cells. A nerve
cell membrane has voltage-gated ion channels that are shut
when the membrane is close to the resting potential. Once
the membrane potential increases to a critical value, these
ion channels open and allow sodium ions to pass the cell
membrane and travel into the cell. The influx of sodium
ions increases the membrane potential even more, causing
more ion channels to open and thus allowing more sodium
ions to move into the cell. This reinforcing process stops
once the membrane potential has reversed and the nerve cell
has reached its action potential. After reaching the action
potential, the sodium channels close rapidly, preventing any
more sodium ions from entering the cell. The sodium ions
are then transported out of the nerve cell and the cell returns
to its resting potential. Understanding the temporal change
of the sodium concentration is therefore important for
understanding the generation and transportation of action
potentials.

In their mathematical model, Hodgkin and Huxley
assume that the sodium conductance is proportional to the
number of specific molecules on the inside of the membrane
but that the conductance is independent of the number
of molecules on the outside [4]. According to Boltzmann’s
principle the proportion P, of the molecules on the inside of
the membrane is related to the proportion P, on the outside

by

P, [ (w + zeE) ] , W

B, Pl ar

where E is the potential difference between the outside and
the inside of the membrane, w is the work required to move
a molecule from the inside to the outside of the membrane
when E = 0, e is the absolute value of the electronic charge,
z is the valency of the molecule (i.e., the number of positive
electronic charges on it), k is Boltzmann’s constant, and T is

the absolute temperature [4]. With P, + P, = 1, the expression
for P, becomes

1
P = .
" 1+exp(—(w+zeE) [kT)

2)

The concentration of the molecules on the inside of the
membrane thus follows a sigmoid function, which will
become important later in this paper.

2.2. Information-Theoretic Model. The formal derivation of
the theoretical information processing model proposed here
begins with a closer look at the calcium ion concentration in
the synaptic cleft close to the postsynaptic terminal. Let this
concentration be p;, as opposed to the outer concentration
in the presynaptic terminal p,. Then, let us assume that the
strength S of the stimulus arriving at the presynaptic terminal
is determined by the ratio of outer to inner calcium ion
concentration p,/p;, or

1-p
S=—=— 3
o, (3)

For example, for an inactive synapse, the concentration
of calcium ions in the synaptic cleft will be one, that is,
p; = 1, as there will be no calcium ions in the presynaptic
terminal. Consequently, according to (3), the signal strength
is zero. On the other hand, for an active synapse, calcium
ions can freely flow into the presynaptic terminal until a
concentration equilibrium is reached between calcium ions
in the presynaptic terminal and calcium ions in the synaptic
cleft, which means p; = p, = 0.5. In this case, according to
(3), the signal strength S is maximum,; that is, S = 1.

Now, let us assume that the postsynaptic terminal per-
forms a linear learning function, taking the strength of the
input signal as input. Describing synaptic learning by a
linear function is not uncommon. In fact, there are reasons
to believe that this reflects the biological reality, and there
have been many approaches in machine learning that model
synaptic learning with linear functions [5-8]. The character-
istic feature of the linear learning function presented here is



that it operates on the information content of the input signal
rather than on the signal itself. To do so, it uses the standard
dual logarithm to measure information, as investigated by
Shannon in his seminal paper [9]. The following equation
describes this linear relationship [3]:

I;P">+c, (4)

i

I=—m-10g2<

where I is the information learned by the linear model at
the postsynaptic terminal. The two parameters that affect
learning here are the slope m and the offset ¢ of the linear
model.

One of the main motivations of using this model is the
form the equation of p; assumes when we resolve (4) for p;:

1
T lrexp(—((I-0)-n(2)/m)

P (5)

Note that the dual logarithm has been converted into the
natural logarithm in (5). This produces the same type of
sigmoid function that was used in Section 2.1.2 to describe
the molecule concentration inside of the cell membrane
(see also (2)). Therefore, the linear information-theoretic
model described here is in accordance with biology and
the way concentrations are measured at membrane transi-
tions. Section 2.4 will delve deeper into learning, but before
continuing with learning, let us have a closer look at the
formalization of Yin-Yang and how it relates to the linear
information-theoretic model.

2.3. Yin-Yang. Duality is not an informal concept with little
meaning outside the philosophical realm. On the contrary,
this section will show that the high-level concept of Yin
and Yang has a well-defined mathematical expression. In
fact, Yin and Yang can be formalized with the mathematical,
information-theoretic model introduced in Section 2.2, as a
linear function of information. To do so, this section shows
how the classic symbol of duality, namely, the Yin-Yang
symbol, can be rendered using the linear information model.
Note that the rendering described in the following is an
improvement to the work presented in [3] in that the median
distance between the “physical” Yin-Yang symbol and the
rendered “information-theoretic” symbol is smaller.
According to the results in [3], the Yin-Yang symbol
depicts the length of a pole’s shadow when measured at the
same time each day throughout the year, as symbolized in
Figure 3. Plotting the number of daylight hours for the first
half of the year and the number of hours of darkness for the
second half of the year in a circular polar plot then produces
the Yin-Yang symbol. In the following, the mathematics used
to measure the number of daylight hours for each day of the
year will be different from the one used in [3]. In particular,
the model presented by Glarner in [10] will be used here. This
model is clearer from a mathematical point of view in that it
does not consider the light refraction in the atmosphere of the
earth. The next paragraph follows the description in [10].
The actual day of the year and the latitude of the observer
both influence the length of the day. The perceived way of the
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FIGURE 3: Yin-Yang daylight model [3].

FIGURE 4: Solar circle for the summer solstice at 45° in the northern
hemisphere (H. Glarner [10]).

sun around the planet can be viewed at as the boundary circle
of the planet’s disc. However, this constellation, in which the
sun apparently circles along the disc’s boundary, applies only
at equinoxes and only at the North Pole. The further away
the observer is from the North Pole (towards the equator),
the more the surrounding circle is tilted along the west-
east axis, until it is completely upright (perpendicular to the
planet’s disc) at the equator. Furthermore, there is also a shift
of the circle away from the disc, along the obliquity of the
ecliptic (connecting the centers of the two circles at an angle
of 23.439%). This shift can be “upwards” (max. distance at the
summer solstice) or “downwards” (max. distance at the winter
solstice), depending on the actual latitude. Figure 4 shows
the tilted and shifted solar circle for the winter solstice at 45°
North. It is only the part b out of the whole circle in which the
sun in visible. When the sun is running along the blue part of
the circle in Figure 4, it is night for the observer. The way to
computing the number of daylight hours is now to calculate
the exposed part b in relation to the whole circle [10]. The
equations necessary to do so require three input parameters,
namely, Axis, Lat, and Day:

(i) Axis. This is the obliquity of the ecliptic, which is the
angle between the rotation axis of the earth and its
orbital plane. The obliquity of the earth is about 23.4°.
It can be considered a constant for the purpose of this
paper because its values change only slowly over a
period of thousands of years.
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FIGURE 5: Yin-Yang symbol generated with the daylight model for L = 68" [3].

(ii) Lat. The latitude of the observer is in degrees. For
example, for an observer at the equator, Lat is 0°. The
latitude will increase for observers further north until
it reaches 90° for an observer standing at the North
Pole.

(iii) Day. This specifies the day of the year. Day runs from
0 to 364 for the first year, with 0.25 added from 365
for every completed year. Note that the day of year
does not start with the astronomically quite arbitrary
January Ist but with the day of the winter solstice in
the first year of a four-year cycle [10].

Using these input parameters, computing the exposed frac-
tion b of the sun’s circle is a two-step process. First, the
following intermediate result needs to be calculated:

m = 1 — tan (Lat) tan (Axis - cos (c - Day)), (6)

where ¢ = 0.0172 is a constant. Note that the argument of the
cos function is in radians, whereas the arguments of the tan
functions are in degrees. The fraction b can then be computed
as follows:

_arccos (1 —m)

180 7

To get the number of hours the sun shines at the given Day
and at the given Latitude Lat, b needs to be multiplied by
24. For a detailed derivation of these equations, readers are
referred to [10].

Based on this computation of b, a linear regression
function can be used to approximate the daily sunshine hours,
as shown in [3]. For example, this produces the following
approximation for one branch of the Yin-Yang symbol:

® (p) = -3.208 - log, (p) + 3.112. (8)

The median error for this branch of the Yin-Yang symbol
is 0.08 h, which is less than half of the error reported in
[3]. This result confirms again that the Yin-Yang symbol
describes a linear information-theoretic function, as pre-
sented in Section 2.2. The left-hand side of Figure 5 shows the
daylight/nighttime hours plotted into a polar plot for Latitude
L = 68°. From the polar plot, the Yin-Yang symbol can be
generated by rotating the plot by 90° and filling one area black
and the other area white. The well-known dots of the Yin-
Yang symbol are plotted halfway between the center of the
circle and the circle’s perimeter.

2.4. Learning. 'This section will have a closer look at learning.
In particular, the linear learning equation in Section 2.2,
(4), will be in the focus here. This equation provides two
parameters that can be tuned for learning purposes: the
slope m and the offset c. For the sake of simplicity, let us
assume that the offset is constant and equals zero; that is,
¢ = 0. The slope m then remains as the main parameter
a synapse can learn. Furthermore, let us assume that the
calcium ion concentration in the synaptic cleft close to the
postsynaptic terminal, that is, p;, is the input that needs to
be learned. This makes sense because p; is directly affected
by the input stimulus and the calcium ion concentration
p; can be considered as teaching input to the postsynaptic
terminal, where learning takes place. The main learning task
of a synapse then involves adjusting the slope m of the linear
learning function until it matches the concentration p;; that
is,m = p;. For the completed learning task, (4) can be written
as follows:

1-p.
I=—p,--10g2(7p1>- 9)

i



If we now require that the learned concentration p;, or
slope parameter m, is equal to the input stimulus (1 — p;)/p;,
then the following requirement needs to be satisfied [3]:

_1-p
b p
_\/5—1 or _—\/g—l (10)
pi = 5 pi = -
p;~0618 or p;~-1618.

This means that the learned concentration equals the input
stimulus when the strength of the input stimulus matches the
(reciprocal of) the Golden Ratio [11, 12]. As mentioned in [3],
the results in the recent literature seem to indicate that the
Golden Ratio plays a role in neural signal processing [13, 14].
This is another corroboration of the validity of the learning
theory proposed here.

2.5. Dual Computation. The learning scheme represented by
(9) describes the synaptic input-output relation after learning.
However, the definition of input and output is arbitrary. In
fact, the dual computation for which input and output change
places is equally meaningful. To formulate a similar learning
equation for the dual computation, (9) needs to be converted
so that it applies in an antagonistic, symmetric way to the dual
computation. This can be accomplished by transforming (9)
into a symmetric form, under the assumption that the input
signal (or stimulus) and the actually learned signal must be
identical. Beginning with the linear learning equation, that
is, Equation (9), the following transformations provide the
desired symmetric form:

I= _Pi‘1082<%>

- Pi2 -log, (1-p;)

(11)
- p; - log, (1 - Piz)

2
—p,-‘log2<\/1—p3 )

This can be written as follows:

o e

which shows the symmetric relationship between the input
signal and the learned output concentration. Note that I is
multiplied by a scalar (1/2) in (12). This linear operation,
however, only affects the scale of the learned information
I. Because this affects I universally, it does not influence
decision making. According to (12), for an input signal

\/1— p?, the learned output is p;. Input and output thus
define a point on the unit circle. The input can be considered

the sine and the output the cosine of a point on the unit
circle, as illustrated in Figure 6. All possible input-output
combinations, or perceptual states, are points on the unit
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FIGURE 6: Perception points on the unit circle.

circle. Therefore, this relationship represents the desired
symmetry between input and output. This symmetry allows
to measure the input signal as p; and the learned output

signal as /1 — p?. For example, if the input signal is one,

that is, the argument of the logarithm in (12) is one, then
the learned output signal and uncertainty I/2 will be zero.
However, because the dual computation behaves antagonistic
and exchanges input and output, the output uncertainty of the
dual computation will be infinite. Conversely, if the input sig-

nal is zero, then the learned output signal /1 — p? is 1 and the

corresponding output uncertainty I/2 is infinite. This means
that the output uncertainty of the dual computation is zero.
According to these results, the equilibrium state, in which
both computations produce the same output uncertainty, is
the state with the minimum overall uncertainty for both
computations. Geometrically, this state is represented by a
point on the unit circle for which both the sine and the cosine
are \/1/2. Therefore, sine and cosine can be considered Yin-
Yang counterparts, and the output uncertainty I (or energy)
is the Yin or Yang force, depending on the computation.

3. Results and Discussion

This section presents an application of the theoretical results
derived above. For a lung screening application in which
lung regions of chest X-rays are scanned for manifestations
of tuberculosis, the machine confidence in abnormal regions
will be graphically displayed.

3.1. Tuberculosis. Tuberculosis (TB) is the second leading
cause of death from an infectious disease worldwide, after
HIV, with a mortality rate of over 1.2 million people in
2010 [15]. With about one-third of the world’s population
having latent TB, and an estimated nine million new cases
occurring every year, TB is a major global health problem. TB
is an infectious disease caused by the bacillus Mycobacterium
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FIGURE 7: Normal chest X-ray (CXR).

tuberculosis, which typically affects the lungs. It spreads
through the air when people with active TB cough, sneeze,
or otherwise expel infectious bacteria. TB is most prevalent
in sub-Saharan Africa and Southeast Asia, where widespread
poverty and malnutrition reduce resistance to the disease.
Moreover, opportunistic infections in immunocompromised
HIV/AIDS patients have exacerbated the problem. The
increasing appearance of multidrug resistant TB has further
created an urgent need for a cost-effective screening technol-
ogy to monitor progress during treatment. A posteroanterior
radiograph (X-ray) of a patient’s chest is a mandatory part of
every evaluation for TB [16,17]. Therefore, a reliable screening
system for TB detection using radiographs would be a critical
step towards more powerful TB diagnostics. An automated
approach for detecting TB manifestations in chest X-rays
(CXRs) would allow cost-effective mass screening of large
populations that could not be managed manually [1].

3.2. Computing Confidence. As a step towards a fully auto-
mated system for TB screening in CXRs, and as an appli-
cation example of the confidence values proposed here, this
paper presents first experiments with a method for detecting
manifestations of TB. The data being used is from Shenzhen
No. 3 People’s Hospital, China [18]. The CXRs were captured
within a one-month period, mostly in September 2012, as
part of the daily routine at Shenzhen No. 3 People’s Hospital,
using a Philips DR Digital Diagnost system. The data contains
342 abnormal images with manifestations of TB. For each
image, a radiologist labeled the abnormal regions. Altogether
1671 regions have been annotated by two radiologists using
the Firefly labeling tool [19], covering 18 different abnormal-
ities, such as infiltrates, nodules, or effusions. For example,
Figure 7 shows a normal chest X-ray, and Figure 8 shows a
few samples of annotated abnormal lung patches. Each of the
abnormal patches is represented by a set of histogram features
that describe textures and shapes within the patch. In particu-
lar, the following features are used to describe the patch, each

quantized into 32 bins: intensity, gradient magnitude, shape
and curvature based on the Hessian eigenvalues, histogram
of gradients, and local binary patterns [1]. All histograms are
normalized and concatenated into a long 192-dimensional
feature vector. To determine whether a region in a CXR is
normal or shows a specific abnormality, the distance of the
abnormal patches to the lung region can be computed by
comparing the patch features with the features of the region.
For the results presented here, the following histogram dis-
tance function is used to compute the distance between two
normalized histograms A and B, where A; and B; denote the
ith histogram bin, respectively, with ) A; =1and ) B; = I:

1 N
D(A,B) = EZ|A,.—B,.|. (13)
i=1

This is done for each feature, with N = 32, and the average
distance among all features is computed as the distance
between patch features and region features. To compute
the confidence value and obtain the desired trigonometric
relationship, the similarity between patch and lung region is
computed as follows:

S(A,B) = \1-D(A,B) (14)

S(A,B) is the confidence provided to the radiologist,
indicating the machine confidence in the abnormality of the
investigated lung region, given the presented patch.

3.3. Saliency Maps. By moving a known abnormal patch
over a new input image and computing the similarity of the
abnormal patch to the local lung region at each location, as
described above, the entire input image can be screened for
abnormal regions similar to the patch. When the confidence
is recorded for each location, and different confidence values
are displayed with different colors, a so-called saliency map
can be generated. The saliency map highlights lung regions
for which the machine is confident in their abnormality.
For example, regions with high confidence can be marked
in red, which provides direct feedback to the radiologist.
The radiologist will be able to understand intuitively the
different grades of confidence provided by the machine
because the confidence is based on the sine/cosine rela-
tionship discussed above. Figure 9 shows three examples of
saliency maps computed for the Chinese X-rays. The first
saliency map on the left-hand side shows an abnormality in
the right lung (note that left/right are interchanged when
describing lungs). The red color signifies that the machine
is very confident that this region is indeed abnormal. The
abnormality indicated in the left lung is less reddish, which
shows that the machine is less confident that this is indeed an
abnormal region. The red lung boundary is the result of an
automated lung segmentation method [20]. The radiologist
can ignore any machine confidence outside this region, if
displayed at all. A similar case is shown in the middle saliency
of Figure 9. In this example, the machine has confidence in
the entire right lung being abnormal. Finally, in the third
example, the machine has identified a relatively small region
of abnormality in the upper right lung, with a relatively high
confidence.
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FIGURE 9: Saliency maps for X-rays from Shenzhen No. 3 People’s Hospital.

In these examples, the similarity function in (14) has been
used to compute the confidence in the similarity of a lung
region to a previously seen abnormal pattern. Alternatively,
any classifier that outputs confidence values can be used
for this task, such as the support vector machine used in
[1] for discriminating between normal and abnormal lungs.
Typically, confidence values are only considered when they
exceed a threshold, which defines the operating point of
the classifier and optimizes the classifier’s sensitivity and
specificity for a given cost function. For example, only
dark red regions in the saliency maps in Figure 9 could be
considered to reduce the false positive rate.

Note that the proposed method for representing confi-
dence values is a postprocessing method. It can therefore be
used in combination with any method that provides graded
confidence in the similarity or dissimilarity of lung regions.
In the lung screening application shown in this paper, the
proposed method takes a dissimilarity measure of two lung
regions and maps it to a similarity measure, according to
the sine/cosine relationship. This would also work in the
opposite direction, that is, mapping a similarity measure to a
dissimilarity measure. The overall idea is that this sine/cosine
relationship between similarity and dissimilarity is more
intuitive, or natural, for human observers.

4. Conclusions

The paper proposes confidence values that can improve
human-machine interaction for computer-aided diagnosis.

The confidence values are motivated by neural signal pro-
cessing and are intuitive in the senses that they are compat-
ible with neural learning processes. Therefore, the operator
of a computer-aided diagnostic system should be able to
intuitively grasp the machine confidence and integrate it
with his or her own confidence to reach a final diagnostic
decision. The paper has revealed a direct connection to
Chinese medicine and the dual concept of Yin-Yang, via a
mathematical formalization of Yin and Yang. Furthermore,
the paper shows that different learning states of a synapse,
for which the input signal corresponds with the learned
signal, can be represented by points on the unit circle. For
the golden ratio, the learned signal corresponds with the
actual signal. The state of equilibrium between Yin and
Yang is the state for which sine and cosine are identical,
which is the case at 45°. This state of equilibrium signifies
neither normality nor abnormality and is thus a state of
nonduality. As a practical example, the paper shows how
the proposed confidence values can be used to highlight
manifestations of tuberculosis in chest X-rays. In particular,
the paper computes saliency maps where colors represent the
magnitude of confidence values, indicating the confidence
of the machine in the abnormality of a region in the chest
X-ray. According to the theory set forth in the paper, the
color intensities should be intuitive and the dynamic range
of the colors (confidence values) should be similar to the
representation a radiologist would use. As future work, the
information-theoretic model presented in this paper could
also help explain the efficacy of acupuncture in a more formal



The Scientific World Journal

framework. For example, the paper explains Yin and Yang as
energies of two dual computations performed at a synapse.
Furthermore, the paper provides a well-defined mathematical
definition of the state of equilibrium between Yin and Yang,
which minimizes the overall energy for a synapse. A high
energy in the input or output of a synapse could indicate
an abnormal state, such as an inflammation for example.
Acupuncture could bring such an abnormal state back into
the equilibrium state, where information can flow freely, and
where there is no excessive heat or cold at the input or output
of a synapse.
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